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extract enhances the antitumor activity 
of bacteria‑mediated cancer immunotherapy
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Abstract 

Background:  Bacteria-mediated cancer immunotherapy (BCI) robustly stimulates the immune system and represses 
angiogenesis, but tumor recurrence and metastasis commonly occur after BCI. The natural product Ilex kudingcha C. J 
Tseng enriched with ursolic acid has anti-cancer activity and could potentially augment the therapeutic effects of BCI. 
The objective of the present study was to determine potential additive effects of these modalities.

Methods:  We investigated the anti-cancer activity of KDCE (Kudingcha extract) combined with S.t△ppGpp in the 
mice colon cancer models.

Results:  In the present study, KDCE combined with S.t△ppGpp BCI improved antitumor therapeutic efficacy 
compared to S.t△ppGpp or KDCE alone. KDCE did not prolong bacterial tumor-colonizing time, but enhanced the 
antiangiogenic effect of S.t△ppGpp by downregulatingVEGFR2. We speculated that KDCE-induced VEGFR2 down‑
regulation is associated with FAK/MMP9/STAT3 axis but not AKT or ERK.

Conclusions:  Ursolic acid-enriched KDCE enhances the antitumor activity of BCI, which could be mediated by 
VEGFR2 downregulation and subsequent suppression of angiogenesis. Therefore, combination therapy with 
S.t△ppGpp and KDCE is a potential cancer therapeutic strategy.
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Background
Immunotherapy is the fourth-leading cancer therapy fol-
lowing surgery, radiotherapy, and chemotherapy [1, 2]. 
Immunological checkpoint therapies, such as CTLA-4, 
PD-L1, and PD-1, have been approved as a clinical cancer 
treatments [3], but also have limitations; “cold tumors” 

have decreased T cell infiltration and decreased antigen 
mutations, such as in pancreatic and ovarian cancers [4]. 
In addition, checkpoint therapy could cause autoimmune 
diseases by overactivating the immune system to attack 
normal tissues [5]. Bacteria-mediated cancer immuno-
therapy (BCI) was originally described over a century 
ago and has significant therapeutic advantages, including 
i) specific tumor targeting; ii) deep penetration of tumor 
tissue; iii) triggering robust antitumor immune stimula-
tion; iv) low toxicity to normal tissues; v) lower cost than 
conventional immunotherapies [6].

Attenuated engineered Salmonella has been tested in 
recent clinical trials [7, 8]. Salmonella-mediated cancer 
immunotherapy profoundly affects the tumor microen-
vironment through several means: shifting macrophage 
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phenotypes from M2 to M1 via toll-like receptors 
(TLRs) [9], initiating tumor cell apoptosis by inducing 
robust nitric oxide (NO) production in tumor cells [10], 
and inhibiting angiogenesis by downregulating vascu-
lar endothelial growth factor (VEGF) [11]. Angiogenesis 
has a very important role in tumor growth and metasta-
sis. Salmonella combined with an antiangiogenic agents 
achieves improved therapeutic efficacy [12, 13].

Ilex kudingcha C. J Tseng is herbal tea in China, and 
bioactive compounds in this natural product have mul-
tiple therapeutic effects, including anticancer [14], anti-
inflammatory [15], antidiabetic [16], and hypolipidaemic 
effects [17]. Ursolic acid is a pentacyclic triterpene acid 
and contributes to the anticancer activity of kudingcha 
[18]. Ko et  al. reported that ursolic acid significantly 
inhibits cancer progression via phosphorylation of the 
ERK and AKT [19]. Prior studies also identified that 
ursolic acid nanoparticle-coated attenuated Salmonella 
typhimurium significantly suppresses tumor growth and 
metastasis [20].

The present study aimed to determine the combined 
effects of Salmonella-mediated cancer immunotherapy 
and ursolic acid-enriched kudingcha extracon antitumor 
activity in a mouse colon cancer model.

Methods
Plant material
Ilex kudingcha leaves were collected from Kudingcha 
Institute (Hainan University, Haikou, Hainan, China) 
and the state permissions were unnecessary to collect the 
sample. The plant material was identified by their mor-
phological characteristics by Dr. Guomin Liu from the 
Kudingcha Institute, Hainan University. One voucher 
specimen (H. Y. Liang 60,355) was deposited at the Kud-
ingcha Institute. Dried leaves were ground and passed 
through a sieve (24 mesh). Kudingcha powder (100 g) was 
boiled twice in water. The collected residue was extracted 
twice with 4 L 100% EtOH for 48 h, then subjected to 
ultrasound-assisted extraction at 50 °C for 30 min. The 
solvent was removed by rotary evaporation to yield a dry 
extract, which was dissolved in petroleum ether, evapo-
rated, and freeze-dried to remove organic solvents. The 
petroleum ether fraction was used for further photo-
chemical analysis and experiments.

HPLC‑PDA analysis
An HPLC-PDA system (Waters Corporation, Milford, 
MA, USA) consisting of a Waters 600 pump and a 996 
PDA detector was used. Analyses were performed using 
a Waters Sun-Fire C18 column (4.6 × 150 mm, 5 μm). 
Chromatography conditions were as follows: MeOH: 
H2O, 90: 10 to 40: 60 for 40 min; MeOH: H2O, 40: 60 to 

100% MeOH for 1 min; and 100% MeOH for 9 min. The 
flow rate was 0.1 mL/min; injection volume was 20 μL 
kudingcha extract (20 mg/mL in petroleum ether); and 
detection wavelengths were 220, 254, and 280 nm.

Mouse colon cancer model and bacterial injection
BalB/c mice (male, 5–6 weeks old) were purchased from 
Guangdong Experimental Animal Center (Guangzhou, 
Guangdong, China). Experiments were supervised by 
the Animal Science and Technology Ethics Commit-
tee of Hainan University. Mice were anesthetized with 
either 2% isoflurane or ketamine (200 mg/kg). CT-26 
cells (1 × 106, ATCC) cultured in DMEM with 10% FBS 
(Gibco, USA) were implanted subcutaneously into the 
right flank to generate colon cancer xenografts. Tumor-
bearing mice were randomly divided into four groups 
(n = 9/group) as follows: PBS, SLΔppGpp, KDCE, and 
SLΔppGpp + KDCE. KDCE groups received 1 g/kg 
KDCE daily via intragastric administration. When tumor 
volume reached 120–160 mm3, 1 × 107 colony-forming 
units (CFU) SLΔppGpp bacteria were intravenously 
injected. When tumor volume reached ≥1500 mm3, mice 
were euthanized. Tumor volumes were measured and 
calculated using the following formula: (L × H × W)/2 (L: 
length; W: width; H: height).

Attenuated Salmonella typhimurium, S.t△ppGpp 
(defective in the synthesis of ppGpp (RelA::cat, Spot::kan)) 
carrying the luciferase gene Lux (S.t△ppGpp-lux; 
SHJ2168, 9] was kindly provided by J. J. Min (Institute 
for Molecular Imaging and Theranostics, Chonnam 
National University Hwasun Hospital, Jeonnam, Republic 
of Korea) and grown in Luria Bertani medium containing 
kanamycin (Sigma-Aldrich). Bacteria were stored in 25% 
glycerol stocks at − 80 °C.

Bacteria counting and optical bioluminescence imaging
Tissues, including tumor, liver, lung, and spleen, were col-
lected from mice. Ground tissue was transferred to agar 
petri dishes and incubated overnight at 37 °C. The bacte-
rial number per gram of tissue was calculated by the for-
mula: Y × 10Z × (1 + X) × 10/X (CFU/g; X: tissue weight; 
Y: bacterial number on the petri dish; Z: dilution factor).

Tumor-bearing mice were injected through the tail vein 
with S.t△ppGpp Lux in 100 μL PBS to image bacterial 
bioluminescence imaging and divided into two treatment 
groups (n = 6/group): S.t△ppGpp Lux and S.t△ppGpp 
Lux + KDCE (intragastric administration 1 g/kg daily). 
D-luciferin (750 μg, Caliper, Hopkinton, MA, USA) was 
intraperitoneally injected, and bioluminescence imaging 
was then performed using an IVIS 100 (Caliper).



Page 3 of 9Xu et al. BMC Complementary Medicine and Therapies          (2022) 22:123 	

H&E staining
Liver, spleen, kidney, and lung were removed from eutha-
nized mice and fixed in 4% PFA solution for toxicity eval-
uation of KDCE + S.t△ppGpp. Paraffin sections (10 μM) 
were stained with a Hematoxylin and Eosin Staining 
Kit (C0105, Beyotime) according to the manufacturer’s 
protocol.

Western blotting
Human Umbilical Vein Endothelial Cells (HUVECs, 
ATCC) were treated with KDCE (0, 40, 80, 100, 120, and 
160 μg/ml) for 24 h. Protein lysates were separated by 10% 
SDS-PAGE and transferred to PVDF membranes (Merck, 
Darmstadt, Germany), which were incubated overnight 
at 4 °C with primary antibodies against VEGFR2 (sc-
6251), p-ERK (sc-136,521), ERK1/2 (sc514302), AKT1/2/3 
(sc56878), p-Akt (sc-293,125), and β-actin (sc-69,879) 
(Santa Cruz Biotechnology, Inc., Texas, USA). Mem-
branes were then incubated with secondary antibodies. 
Protein bands were visualized using a chemiluminescence 
detection kit (ATTO, Tokyo, Japan) and semi-quantified 
using Image J Ω (Media Cybernetics, Maryland, USA).

Statistical analyses
Statistical analyses were conducted using the Graph-
Pad Prism 5.0, and p < 0.05 was considered statistically 

significant. Survival analysis was conducted using the 
Kaplan-Meier method and a log-rank test. All data are 
expressed as means ± SEM.

Results
KDCE Ursolic acid content
Leaves of I. kudingcha were collected from the Kud-
ingcha Institute, Hainan University, Hainan province, 
China, in July 2020. Kudingcha powder (100 g) was 
extracted with boiled water, 100% EtOH, and petroleum 
ether in turn. The yield petroleum ether fraction (7.49 g) 
was used to detect the concentration of ursolic acid in 
KDCE using spectrophotometric analysis. Results indi-
cated that KDCE contains 134 mg/g of ursolic acid using 
purified standards as calibrators at 220, 254, and 280 nm 
(Fig. 1).

Effect of KDCE on anticancer activity of BCI
To evaluate the effect of KDCE on the therapeutic effi-
cacy of BCI, SLΔppGpp (3 × 107 CFU) was injected into 
tumor-bearing mice via the tail vein on day 1, followed 
by intragastric administration of KDCE (1 g/kg) daily 
from day 2 to day 27. KDCE had antitumor activity, and 
when combined with SLΔppGpp had a strong synergistic 
effect in suppressing tumor growth (Fig. 2A and B) and 
increased survival rate (Fig. 2C).

Fig. 1  KDCE contains 134 mg/g of ursolic acid. HPLC chromatograms for ursolic acid standard solution (A) and kudingcha samples (B)
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Fig. 2  Effect of KDCE on S.t△ppGpp BCI. KDCE combined with SLΔppGpp show synergistic effect in suppressing tumor growth and increased 
survival rate. A Representative images of tumors for each group over time. B Tumor volume measurement (BalB/c mice, n = 9/group). C 
Kaplan-Meier survival curve. Statistical significance was calculated by comparison with PBS or S.t△ppGpp-alone groups (***p < 0.001)
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Effect of KDCE on tumor‑colonizing bacteria
To determine the effect of KDCE on tumor-colonizing 
bacteria, bacterial activity was measured by biolumines-
cence analysis, in which tumor-bearing mice were injected 
with SLΔppGpp-Lux. The bacterial tumor-colonizing time 
in the SLΔppGpp + KDCE group (8 days) was shorter than 
in the SLΔppGpp-only group (10 days) (Fig. 3A).

Subsequently, to determine bacterial distribution 
in major organs, we collected tumor, lung, liver, and 
spleen samples from bacteria-injected tumor-bearing 
mice on days 2 and 6. The tumor-colonizing bacte-
rial number in the SLΔppGpp + KDCE group was 
higher on day 2 but lower on day 6 compared to the 
SLΔppGpp-only group (Fig. 3B).

Toxicity evaluation of KDCE/BCI combination therapy
To evaluate the safety of KDCE/BCI combination ther-
apy, we collected lung, liver, and spleen samples from 
SLΔppGpp-injected tumor-bearing mice on day 6 after 
KDCE treatment for H&E staining. SLΔppGpp + KDCE 
did not induce toxicity in the liver, spleen, kidney, or lung 
as compared to other groups (Fig. 4A) but did decrease 
body weight (Fig. 4B).

KDCE VEGFR2 downregulation
To determine if the anticancer activity of KDCE was 
related to suppression of angiogenesis, we measured 
AKT and ERK phosphorylation and VEGFR2 levels 
using western blotting in HUVECs. KDCE significantly 

Fig. 3  Effect of KDCE on tumor-colonizing bacteria. The survivor and number of tumor-colonizing bacteria in the SLΔppGpp plus KDCE group 
was lower than in the SLΔppGpp-only group (A) Non-invasive monitoring of bacterial bioluminescence for 12 days (BalB/c mice, n = 6/group). B 
Bacterial counts in isolated organs from tumor-bearing mice on days 2 and 6 (BalB/c mice, n = 6/group). Statistical significance was calculated by 
comparison with S.t△ppGpp-alone groups (*p < 0.05, ***p < 0.001)
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downregulated VEGFR2 in a dose-dependent manner, 
but did not affect AKT or ERK phosphorylation (Fig. 5).

Discussions
The delivery and efficiency of the drug are improved 
by nano-encapsulating, but FDA approval and com-
mercialization of nanomaterial still is a major challenge 
[21–23]. We previously observed remarkable tumor-
targeting and therapeutic effects using hydrocypropyl-
β-cyclodextrin (HPCD)-encapsulated ursolic acid 
coating the surface of S.t△ppGppand by amanta-
dine (AMA) [20]. However, considering ursolic acid-
enriched KDCE is easier to access in a clinical trial 
than nano-encapsulated ursolic acid, we determined 
the tumor therapeutic effect of KDCE combined with 
S.t△ppGpp.

Salmonella-mediated cancer immunotherapy stimu-
lates immune activation and inhibits angiogenesis by 
downregulating VEGF [11]; Kudingcha [24] and ursolic 

acid induces cancer cell apoptosis [25]. Here, we dem-
onstrated that ursolic acid-enriched KDCE enhances 
the antitumor activity of S.t ΔppGpp-mediated can-
cer immunotherapy, but does not increase bacterial 
tumor-colonizing time or number. We postulated that 
ursolic acid-enriched KDCE could decrease tumor 
volume by downregulating VEGFR2, limiting bacte-
rial colonization. Several prior studies reported that 
VEGFR2 downregulation plays important role in sup-
pressing tumor angiogenesis, which is related to sup-
pression of ERK [26–28] and AKT [29–31]. However, 
our findings suggest that KDCE-induced VEGFR2 
downregulation is not related to deactivation of the 
AKT or ERK pathways. The prior studies reported that 
VEGFR2 downregulation must be due to decreased 
VEGF synthesis, which auto-regulates its receptor, 
VEGFR2. In addition, the phosphorylation FAK and 
Matrix metalloproteinases 9 (MMP9) and Signal trans-
ducer and activator of transcription 3 (STAT3) interact 

Fig. 4  Toxicity evaluation of KDCE combined with S.t△ppGpp. A H&E staining for isolated organs of tumor-bearing mice on day 6 after 
BCI treatment (BalB/c mice, n = 6/group). No signs of steatosis, inflammatory infiltrate or fibrosis in the liver, spleen, kidney, and lung were 
observed in each group. B Body weight on day 27 (BalB/c mice, n = 6/group). Statistical significance was calculated by comparison with PBS or 
S.t△ppGpp-alone or KDCE groups (**p < 0.01)
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with VEGF signaling [32, 33]. Hence, we speculated 
that perhaps KDCE-induced VEGFR2 downregulation 
is associated with FAK/MMP9/STAT3 axis.

The current research has been focused on bacteria-
mediated gene therapy of delivering therapeutic drugs 
for enhancing the efficacy of BCI [34–36], but our inves-
tigation indicated that a combination of BCI and nature 

products having anti-angiogenesis function is also an alter-
native approach.

Conclusions
The present study demonstrated that ursolic acid-
enriched KDCE enhances the antitumor activity of BCI, 
which could be mediated by VEGFR2 downregulation 

Fig. 5  Effect of KDCE on protein expression of p-AKT, AKT, p-ERK, ERK, and VEGFR2. VEGFR2 was downregulated, but not p-AKT or p-ERK
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and subsequent suppression of angiogenesis. Combined 
BCI and KDCE treatment is a potential modality for can-
cer therapy.
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